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ABSTRACT \_?

This paper presents a novel polynomial-time algorithm for compacting a VLSI
{ayout. Compared to previous algorithms, the algorithm promises to produce
higher quality output while reducing the need for designer intervention. The
performance gain 1is realized by converting wires into constraints on the
positions of the active devices. These constraints can be solved by graph-
theoretic techniques to yield optimal positions for chip components. A single-
layer router is then used to restore the wires to the layout, using as many Jjogs
as necessary.
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ﬁ Introduction
2 F. Miller Maley
Laboratory for Computer Science
Massachusetts Institute of Technology, Cambridge
.
4
Ab:traet:-This paper presents & novel polynomial-time algorithm for com-
pacting a VLSI layout. Compared to previous algorithms, the algorithm
promises to produce higher quality output while reducing the need for de-
signer intervention. The performance gain is realized by converting wires
into constraints on the positions of the active devices. These constraints can
oy be solved by graph-theoretic techniques to yield optimal positions for chip
(’; components. A single-layer router is then used to restore the wires to the
'3 layout, using as many jogs as necessary.
3 1. Introduction
- A= automated compaction procedure is an effective tool for cutting produc-
tion costs of a VLSI circuit at low cost to the designer, because the yield of
o fabricated chips is strongly dependent on the total circuit ares., An effective
F: compaction system also reduces design time by freeing the m )
continual concern over design rules. If excess layout space can be removed .
automatically, the designer can sketch a layout without making constant ef- T, .
- forts to conserve asea. For these reasans, compaction algorithms have gained 3
" widespread attention in the VLSI literature (4, 5, 9, 11], and have been in- s
- corporated into many recent computer-aided circuit design systems (2, 4, 10, '-j'.--f.i
R 17). N
. Ja For e
X Most compaction algorithms, including the one described here, com- .= d\ o
f press a layout in one dimension only. To reduce both dimensions, the layout (T:,?;M 0 e
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262 Compaction with Automatic Jog introduction

can be alternately compacted in z and y until the algorithm can find no fur-
ther improvement. Compaction in two dimensions simultancously is theoret-
ically difficult, although it scems to work well in practice [S]. The remainder
of this paper assumes that the direction of compaction is horisontal.

1.1. Constraint-based compaction

The more recent systems [4,10] use a constraint-dased technique to
provide one-dimensional compaction. These procedures begin by assigning
to each layout component i a variable z;, which represents the z-coordinate of
that component’s leftmost point. The design rules of the fabrication process
are then used to derive constraints on the positions of the components. For
example, if device i lies to the left of device j, and such devices must remain
at least 2 units apart in order to function reliably, the compactor generates
a constraint z; — z; 2 2 + w;, where w; is the width of component i. (We
make the usual assumption that components are not allowed to jump over
one another.)

The design rules lead naturally to a set of constraints with very nice
properties. First of all, the constraints are not especially difficult to compute
[9]. Second, they are sufficient to guarantee that the compacted layout is
legal. Third, all constraints are simple kincar snequalitics: they have the
form

Zi=2i 205,

where z; and z; are two of the variables assigned to layout components, and
a;; is a constant.

Because of the simple form of the inequalities, they can be solved
efficiently by graph-theoretic techniques. One constructs an edge-weighted
graph whose vertices represent the variables z,, and in which an edge of
weight a,; from node z; to node z; represents the constraint 2, ~ 2 2 a;.
An assignment to the variables z; that satisfies all the constraints is then
determined by a longest-path computation on the graph. The resulting
values specify the optimal positions of the components in the compacted
layout. A good introduction to constraint-based compaction may be found
in [5); common algorithms for computing longest paths are discussed in [8].

1.2. Automatic jog introduction

In arder to perform any sort of compaction, the components of the
layout must be differentiated into modules, which are fixed in size and shape,
and wires, which are flexible. Common procedures for generating design
rule constraints [4,5,9) assume that wires are simply rectangular regions of
variable length, and otherwise identical to modules. A vertical wire, for
example, would be assigned an z-coordinate during horizontal compaction,
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and could only be moved rigidly from side to side. But one would often kke
s previously straight wire to bend around an cbetacle duting compaction, if
the area of the circuit could thereby be reduced.

This problem is not easily overcome. Many systems (4, 17] attempt

to solve it by allowing the designer to specifly jog points at which wires

. may bend. Compaction then becomes an interactive procedure in which the

~ designer repeatedly examines the compacted layout, adds more potential jog

points, and retries the compaction operation. Other systems [4] attempt to

insert jogs automatically, using ad hoc techniques which are not guaranteed

to be cffective. One technique that will work is to insert all possible jog points

into every wire. The resulting algorithm has the theoretical drawback that

. it requires exponential time on some inputs; even in practice, it is kkely to
consume large amounts of time and memory.

The polynomial-time algorithm presented in this paper has the cape-
bility to introduce jog points automatically in an optimal fashion. It can thus
be expected to produce high quality output with little designer intervention.
Automatic jog introduction is achieved by treating wires not as solid objects,
but only as indicators of the topology of the layout. Coostraints between
modules no longer express design rules directly; instead, they will ensure
that there exist poths for the wires, having the given topology, that sat-
isfy the design rules. The new constraints, called routability conditions, can
be formulated as simple linear inequalities, and solved as usual. When the
optimal module placements have been established, the new wire paths are
- determined by a single-layer router presented in [6]. This router generates
5 0o “unnecessary U's,” and therefore minimises wire lengths, given that the
. layout topology is fixed.

This approach to compaction depends ca. she ability to generate com-
plete routability conditions for a layout. Until recently, such conditions were
known caly for certain channel routing problems {7,16]. The present work is
> made possible by the theory of planar routability developed in (1) and [14).

< . .
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The remainder of this paper is organised as follows. Secties2 states the
definitions and theoretical results that underlie the new compaction method.
In this extended abstract,all-procfs-are-omitted) Sectiop- 3 shows how the
circuit layout is converted to a data structure appropriate for compaction,
ndSomonldemhtbebodydthecompumdpmhm 1-mention-in’>
Sectios 5 $éveral improvements to the dgorithm.tht should make it run
considerably faster. Sectiem 6 comments e algorithm’s correct-
ness prool. Finally;1-conclude-ip, Sectiont> 7 some extensions of-my-
results, and s discussion of the practical value of ¥ compaction algorithm.
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264  Compaction with Automatic Jog introduction Q
2. Sketches and planar routability

The principal data structure used by the compaction algorithm is called a
sketeh. A sketch represents one layer of & VLSI cirenit, including both fixed
objects and the topalogy of the interconnecting wires. The algorithms in this
paper process only one sketch at a time, without loss of generality. Com-
paction of a circuit with multiple layers can be accomplished by compsting
the constraints for each laycr independently, and merging the constraint sys-
tems. This section defines precisely what 1 mean by a sketch, and states the
theorem from [6] that determines routability conditions for a sketch. For
simplicity, the model we will use is more restricted than necessary. Section 7
notes that some of the restrictions can be relaxed.

2.1. Definition of a sketch

A sketch is an ordered pair (F,W) consisting of a finite set F of feo-
tures, which are points and straight line segments, and a finite set W of
wires, which are simple paths in the plane. Figure 1 shows an example of &
sketch. Modules are represented as collections of features, because for tech-
nical reasons, terminals must be separated from other features. The features
and wires of a sketch must satisfy the following restrictions:

(1) Distinct components of the sketch (features and wires) may intersect
only at their endpoints.

(2) Distinct wires may not intersect, and no wire may croes itself.

(3) Each wire touches exactly two features, which ure single points lying
at the endpoints of the wire. They are called the terminals of the wire,
(Multiterminal wires can also be handled; see Section 7.)

(4) Four of the features of the sketch form a dounding boz around the other
components.

When referring to “points in the sketch,” we will mean points lying on fea- "
tures in the sketch. The connected groups of features are called the obstacles N
of the sketch. The definitions imply that each terminal is its own obstacle. o
Features represent the fixed parts of the layout, the modules; wires represent

the flexible interconnections. Clearly, & sketch whose wires are well-behaved

(e.g., consist of line segments) can easily be encoded in a dats structure.

2.2. Legality and routahility

A s Mg L
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I now define what it means to route a sketch, and when a sketch r :f::
represents & Jegal layout. A curve in a sketch S = (F,W) is a path in the ;::'.- :
plane that begins and ends on festures in F, and intersects no features in X

between. (For example, the wires in W are curves in §.) Two curves in S
are Aomotopse if there is & continuous deformation of the plane that maps
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Figure 1. A typical sketch. Solid points and line segments are fes-
tures, wavy lines are wires, and dotted lines are conceptual module
boundaries.

sketch (F,W’) whose features are the same, and whose wires can be obtained
from the wires W by a continuous deformation of the plane that holds the
features F fixed. (Thus the wires in W’ are homotopic to the corresponding
wires in W.) A aketch is said to be legal if it represents a legal VLSI layout,
which for our purposes means that the following conditions hold:

(1) All cbstacles and wires lie in the rectilinear grid of unit specing.

(2) The wires form vertex-disjoint paths in the grid.

A sketch is routable if it has a legal routing. Using the algorithm
in [6], & legal routing of a routable sketch can be found in polynomial time.
Figures 1 and 2 illustrate the concepts of legality and routability. The sketch
in Figure 1 is illegal, because it contains curved wires. Nevertheless, it is
routable, and one of its legal routings is shown in Figure 2.

2.3. Routability conditions

The compaction algorithm is based on a theorem from [6] that char-
acterises the routable sketches in terms of the following concepts. If p =
(z9,9p) and ¢ = (z4,y,) are points in the sketch S, then P denotes the
open-ended line segment from p to ¢. Such a segment is called a et f it

intersects no features in S. The capacity of a cut §7 is the maximum number
of wires that can legally cross J§; in symbals,

cap(PF) = max{jz, - 2p|s lye - 9ps 1}~ 1 .

The flow acroes B, denoted flow(BY), is the number of crossings of P§ that
are enforced by the topology of the sketch. (See Figure 3.) Crossings of 5§
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Figure 3. A legal routing of the sketch in Figure 1.

that can be removed by deforming the wires W do not contribute to the flow.
More formally, flow(75) is the minimum, over all routings (F, W') of (F,W),
of the sumber of times 5 is crossed by wires in W',

Pigure 3. A portion of » sketch with a cut §§. The flow acrom Jj is
1.

The routability of a aketch is completely determined by the flows and
capacities of its cuts. Let us say that a cut is safe (1] if its flow does not
exceed its capacity. Then we have the following result.

Lemmas 1. [6] A sketch that contains an unsafe cut is un-
routable.

More significantly, the converse is true (except when the features of the
sketch are illegally placed): a sketch that contains no unsafe cuts is routable.
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F.M. Maley 267

In fact, this statement may be strengthened. A critical cut Bf is one such
that p is the endpoint of a feature, and g is the closest point on its feature
to p. The critical cuts are the only important ones.

Theorem 3. [6] The sketch (F,W) is soutable if and only if
(F,0) is legal and every critical cut in (F,W) is safe.

The inequalities flow(BF) < cap(Fj) for the cuts 7§ of a sketch are called the
routability conditions for the sketch. Constraints of this sort will be used
by the compaction algorithm to determine the optimal positions for layout
features.

3. Computing flows in the sketch

This section describes a procedure used to facilitate the computation of
routability conditions for a sketch. As suggested by Theorem 2, the impor-
tant attributes of a sketch are the flows and capacities of cuts. Capacities
are purely geometric quantities, and can be computed in constant time. In
addition, they vary in a regular vy with the movement of features during
compaction. Flows, on the other hand, are topological quantities, and are
relatively difficult to compute. Moreover, they depend in complex ways on
the positions of features. Thus to compute flows, we require a data struc-
ture that captures the topology of the sketch, and that is invariant under
compaction. [ begin by presenting such a structure.

3.1. The adjacency graph

The data structure we need is called the adjacency graph of the sketch.
Its construction is straightforward, and is illustrated by Figure 4. From &
point on the leftmost edge of each obstacle, except the bounding box, a line
is drawn leftward until it hits another obstacle. These line segments and
rays will be called Aurdies. Now each wire is replaced by a homotopic wire
that intersects as few hurdles as possible, making sure that no two wires
cross. (Wherever a group of wires crosses a hurdle and crosses back, they
are moved to the other side of the hurdle.) The resulting set of objects forms
a planar graph, whose vertices are obstacles and hurdle/wire crossings, and
whose edges are pieces of wires and hurdles. The dual of this graph is the
adjacency graph of the sketch. A node of the adjacency graph corresponds
to a face of the original graph, and is said to border on the points forming
the boundary of that face. The adjacency graph does not change during
horisontal compaction, because hurdles can only slide back and forth, and
we will not allow wires or features to cross over one another.

The purpose of the hurdles is to relate curves in the aketch to the
sketch topology. Consider the sequence of hurdles crossed by a curve, iz
order, together with the directions of crossing. Such a Aurdle sequenc: can




Figure 4. The adjacency graph of the sketch in Pigure 1. Dasbed Lines
are hurdles, and circles are nodes of the adjacency graph. Adjacency
poph edges are not depicted.

be put into a canonical form by removing all unnecessary crossings, that is,
all places where the curve crosses a hurdle and immediately crosses back in
the other direction. One can show that two curves with the same endpoints
have the same canonical hurdle sequence if and only if they are homotopic.

3.2. Computation of flows

An appropriate search through the adjacency graph can compute the
flow across a cut. To see how, notice that there are two kinds of edges in the
adjacency graph: “wire edges,” which represent adjacency across s wire, and
“hurdle edges,” which represent adjacency across a hurdle. A path through
the adjacency graph thus has a hurdle sequence, determined by the hurdle
edges it contains. The following lemma demonstrates the correspondence
between the two kinds of hurdle sequences. By the length of a path in the
adjacency graph we mean the number of wire edges the path contains.

Lemma 3. Suppose that a cut JJ of sketch S has hurdle se-
quence H. Let Pathe(Pg) be the set of paths in the adjacency
graph of S, which begin at a node bordering on p, end at a node
bordering on ¢, and bave burdle sequence H. Then flow(5y) is
equal to the length of the shortest path in Pathe (BF).

To make use of this lemma, we must be able to find shortest paths
with given hurdle sequences in the adjacency graph. It turns out that the
following “ reedy” technique suffices. We may assume that each hurdle is to
be crossed from bottom to top. Call the adjacency graph G, and define G’
to be G with its burdle edges removed.
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Algorithm P. (Computes the flow across a cut.)
lnput: a cut §F with hurdle sequence (h,,...,h,), the adjacency graph G.
Local variables: integers ¢ and ¢, nodes u and v.
Output: the flow f across .
1. [ ~ min{DIST-FROM(w) : w borders on p};
2. function DIST-FROM(w);
S.te=0ue—uw;
4. fori—1tondo

begin
5. v — node bordering A; from below that is closest to « in G';
6. t ~ t + distance from u to vin G';
7. u +~— node adjacent to v acroes hurdle h;;

end;

8. v — node bordering ¢ from below thai is closest to  in G';
9. return t + distance from u to v in G';

In other words: for each node bordering ox g, find the shortest patli to the
first hurdle, cross the first hurdle, find the shortest path from there to the
second hurdle, and so on. Breadth-first search can be used to imaplement
lines 6-7 and 8-9. This approach may work well in pzactice, but its worst-
case behavior is poor. ] show in Section 5 how to implement Algorithm F
more efficiently.

4. The compaction algorithm

This section defines mathematically the problem of compaction with auto-
matic jog introduction, and presents a practical algorithm that solves this
problem. I assume that each layer of the circuit to be compacted is available
in the form of a sketch. In fact, the compaction algorithm will deal with one
sketch alone, for the existence of multiple layers adds nothing fundamental
to the compaction problem.

4.1. Configuration space

Let the input aketch be denoted by S. For the purpose of compaction,
the obstacles of S should be grouped into modules: collections of features
whose relative positions are fixed. The compactor is allowed to choose a
horisontal displacement for each module. Such & vector of displacements is
called & configuration of S. The configuration d = (d,,...,d,) corresponds
to a sketch in which module § has been shifted right by a distance d; (or
left by a distance —d;). If the sketch has n modules, then the set of all its
configurations is the vector space R", and the origin O of this configura-
tion space corresponds to the original sketch. The sketch associated with
the configuration d will be denoted S(d), and is uniquely defined (up to
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270  Compaction with Automatic Jog Introduction Ak

wire homotopy) by requiring that its wires have the same canonical hurdle
sequences they had in the original sketch S(0).

Using configurations, we can describe how the sketch changes during
compaction. If p is a point in S, its £ and y coordinates will be denoted z,
and y,, respectively. The module in which p lies will be written u(p), so the
horizontal position of p in the sketch S(d) is 2z, + d,,(,). The notation p(d)
stands for p shifted by d, that is, the point (z, + d,,(;),3,). In general, the 3
application of an object to a configuration d denotes the instantiation of that A
N object in the skotch S(d). Finally, let Ayq(d) be difference in z-coordinates i
o between g(d) and p(d); that is, OO

e Byy(d) = (zg +dy(e) = (2p + dugy)) -
4.2. Problem statement S,

The compaction problem is to find a configuration d such that S(d)
is routable. and can be routed in minimal width. As we have stated it, the
compaction problem is generally very difficult; in fact, it is NP-complete
(11). The reason is that the routability conditions may not define a convex '
region of configuration space, and hence the set of acceptable configurations .
{d € R" : §(d) is routable} is usually very hard to search. For example, o
- whenever two modules are adjacent, it may be poasible to exchange them Sy
. while maintaining the topology of the sketch, and the resulting sketch may el
be routable. But intermediate positions, where the modules intersect, are B e
not routable, so the set of acceptable configurations is not convex. Even if we G, s
do not expect modules to exchange positions, loops of wire can interfere with
one another in the same way, as shown in Figure 5. In most optimization
problems, including compaction, one only expects to search a convex sub- e
set of the acceptable configurations, in order to achieve a polynomial-time R
i algorithm. The algorithm presented here searches the largest such region ey

(00 e e e
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that contains the initial configuration, and thus finds the best configuration £
available to any algorithm of its type.

4.3. Algorithm overview

SeL L,
'.-I'."".

The basic notion underlying the compaction algorithm is that of a o
potential eut. For the purposes of this section, a potential cut is a continuous
function that defines for each configuration d € R" a line segment between
two features in S(d). The line segment may or may not be a cut, depending
on the positions of the features in S(d). The configuration ¢ is said to
protect a potential cut ¢ if either ¢(c) is not a cut, or y(c) is a safe cut.
The significance of these definitions lies in a reformulation of Theorem 2 in
terms of potential cuts. That theorem can be read as follows:

5

2

oy rw L/
DR R B ] AP

Let S = (F,W) be a sketch, and let ¢ be a vector in its configura-
tion space. There exist certain eritécal potential cuts, depending
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Figure B. How wires can prevent modules from sliding past one
another. If the upper module is allowed to slide past the lower one,
the set of acceptable configurations is not convex.

only on the features F, such that the sketch S(¢) = (F(e),W(c))
is routable if and only if:
(1) the sketch (F(c),0) is legal, and
(2) the configuration ¢ protects every critical potential cut
of §.

The compaction algorithm works by finding a subset of configuration
space, determined by simple linear inequalities, whose configurations protect
every critical potential cut. It thereby ensures that it chooses a configuration
that corresponds to a routable sketch. (Condition (1) above can be ignored,
because the wireless sketch (F(c),®) is legal unless its features fail to lie in
the grid. This cannot happen, because the initial sketch (F,W) is assumed
to be legal, and the compaction algorithm never considers nonintegral dis-
placements for modules.) The subspace scarched is chosen so as to include
the initial configuration. An overview of the compaction technique follows.

The central problem is to find a simple linear inequality that ensures
that a potential cut, say ¢, is protected. One would like to use the routabil-
ity condition cap(¥(d)) 2 flow(y(d)) as a constraint on the configuration d,
but for most potential cuts ¥, this constraint is not a simple linear inequality.
The difficulty lies not with the capacity of y(d), which is determined solely
by the geometry of S{d), and depends in s simple way on the displacements
d;. Rather, the quantity flow(y(d)) is hard to characterize, because it de-
pends on the relation of the line segment y(d) to the topology of the sketch
§(d).

The solution is to find a specific configuration ¢ such that whenever the
potential cut ¥(d) is unsafe, its flow is equal to flow(y(c)). The constraint
cap(¢(d)) 2 flow(¥(c)) is then sufficient to protect y. Moreover, when
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272 Compaction with Automatic Jog Introduction

this constraint is written in terms of the variables d;, it becomes a simple
linear inequality, because the right hand side is constant. To find e, the
algorithm looks for a configuration that minimizes the capacity of ¢, subject
to the condition that all critical cuts of amaller vertical span are safe. These
shorter cuts force the other features to the side of ¢ on which they must
lie, if ¥ is ever to become unsafe. If, in this way, the algorithm finds a
configuration ¢ that does not protect ¢, the routability condition for ¥(c)
is remembered. Otherwise, the potential cut ¥ may be ignored.

4.4. Deseription of the compaction algorithm

Since critical cuts move in nontrivial ways during compaction, it turns
out to be more convenient to consider the following types of potential cuts:
¢ Horizontal cuts from feature endpoints.
o Cuts between pairs of feature endpoints.

The constraints generated from these potential cuts turn out to be sufficient
to protect all the critical potential cuts.

The horizontal potential cuts are particularly simple, because their
flows are independent of the configuration. These potential cuts are treated
first in order to generate the constraints that prevent features from crossing
over one another. A horizontal potential cut is a function ¢,, of the form
#p¢(d) = p(d)g(d), where p and g are points in the original sketch. Assuming
without loss of generality that z, > z,, Theorem 2 gives the routability
condition

Bpe(d) 2 flow(dpy(d) +1.

Since flow(¢,4(d)) = flow(P]) for p§ borisontal, the constraint is a simple
linear inequality '

du(e) = du(p) 2 (ow(PT) + 1) + (25 - z,)

on the displacements of p and ¢. The flow across $§ is easily computed
by Algorithm F of the previous section. The initial set of constraints is
computed from the horisontal cuts that are incident on feature endpoints.
Of course, the constraints are maintained as a graph over the variables d;.
The constraint graph will be called 1.

The second stage of the algorithm concerns the cuts that are not hor-
izontal. Let & be the set of potential cuts ¢,, where p and ¢ are feature
endpoints with y, # y,. The height of an element ¢,, of & is the quantity
lvp = ¥¢|- This quantity is independent of configuration. Sort ® in increasing
order of height, to form a sequence in which flatter potential cuts precede
taller ones. After ¢,, € ® has been processed, the algorithm can ensure that
the output configuration protects ¢,,.
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The algorithm examines the elements of ® in sorted order, and for
each one that proves important, it adds an appropriate constraint to the
graph 1. The constraint for a potential cut ¢,, € ®, with z, > z,, is com-
puted as follows. First, the algorithm solves the current constraint system [/
together with the temporary constraint A,,(d) 2 0, fixing d,(,), and mini-
mizing d,(,). Call the resulting configuration c¢. If ¢ protects ¢,,, then the
constraint set is unchanged; otherwise, the constraint

duie) = duip) 2 (2p — 2) + flow(dpg(c)) + 1

is added to I. The new constraint is a simple linear inequality derived from
the routability condition cap(¢pq(c)) 2 flow(dpe(c)) + 1.

After all the potential cuts in ¢ have been proceased, the constraint
system [ is complete, and the algorithm solves it using a longest-path algo-
rithm. The resulting configuration is used to build an output sketch, which
is then routed using a single-layer router such as Algorithm R in [6]. That
particular router has the advantage of being able to minimize the lengths of
the wires in the routing.

The compaction algorithm is summarized below. We assume that the
left and right edges of the sketch's bounding box compose modules 1 and n,
respectively, and that the top and bottom edges of the box are ignored.

Algorithm C. (Compacts a sketch in the z-direction.)

Input: a sketch S = (F,W).

Local variables: the points p and ¢, a configuration ¢, and the constraint
graph [ over variables d; (1 < i € n).

Output: the compacted sketch.

Subroutines: Algorithm F is used to compute flows in lines 2 and 5; Dijk-
stra’s algorithm is used in lines 4 and 7; Algorithm R (a single-layer
router from [6]) is used in line 8.

1. Preprocess S as described in Section 3;
3. Let I be the set of constraints {4 ,4(d) > flow(pg) + 1) where pF is a
borizontal cut with z, < 2, and either p or ¢ is an endpoint of &
feature in F.
3. foreach pair of feature endpoints {p, g} with z, < z, and y, # y,, in
order of increasing height do
begin
4. Find a configuration ¢ that minimises c,(y) = ¢,(,) While obeying
the constraints I U {A,,(d) 2 0};
8. if p(c)e(c) is a cut in S(c) then if flow(gyy(c)) > cap(dpy(c))
e. then add the constraint A,,(d) 2 flow(gp,(e)) +1t0 ]
end;
7. Find s configuration ¢ satisfying / that minimises ¢, - ¢;;
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8. Route the sketch S(c) and output the result.

4.5. Details of the implementation

o The computation in line 2 is easily performed using Algorithm F of the
previous section. The cuts themselves may be found by any straightforward
method, as the algorithm’s run time will be dominated by other factors.

o Line 3 requires that pairs of feature endpoints be enumerated in order i
of vertical separation. Writing down the pairs and sorting them would waste R

large amounts of space; the following approach is better. First sort the ,F-',:::',E:
feature endpoints by y-coordinate, and associate with each endpoint the pext :::-:::-:
higher endpoint. Place these pairs in a priority queue, and keep the queue BN

sorted by difference in y-coordinates. At each iteration of the loop (lines 3-
6), withdraw the beat element {p, ¢} from the priority queue, and process the
potential cut ¢,,. Then find the next endpoint ¢’ above ¢ in y-coordinate, if
one exists, and insert the pair {p,q'} into the priority queue. This method
uses linear space, and no more time than other parts of Algorithm C.

o To solve the constraint system in line £, it sufices to compute longest
paths from the vertex u(p). Dijkstra’s algorithm can be used for the purpose,
because every edge in the graph has weight gero or less. (Normally, Dijkstsa's
algorithm is used to find shortest paths, and then the edge weights must be
nonnegstive.) To see why edge weights are nonpositive, consider the case
when all the displacements d; are zero. Using the assumption that the initial
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configuration is legal, one can prove that it obeys all constraints. Hence if Cal
d; - d; 2 a;; is a constraint in I, then it holds under the assigment d = 0. b L...
" The result is that 0 — 0 2 a5, that is, a;; is nonpositive. -:::-:::
- ¢ Once the algorithm finds the key configuration ¢ in line 4, line 5 must T
[« determine whether ¢,,(¢c) is a cut, and if so, what value flow(dpe(c)) takes ::-::::
. on. The former possibility may be checked by looking for a feature that NS
intersects épq(c). To compute flow(dyy(c)), Algorithm F is invoked. It E
3 requires as input the burdle sequence of ¢pq(c), which can be found by R
N checking every hurdle that lies between y, and y, in altitude. Include only SN
b ! This simple obeervation has importapt implications for the problem of com- <
paction, with or witbout jog introduction. Essentially, it says that whenever cve's L_
input layout satisfies all the campaction constraints, one can ensure that all the :

edge weights in the constraint graph bave the same sign, just by choosing the
proper coordinate system. The compaction variables must represent offscts from
the initial module positions, or equivalently, the reference poiat of each 1module
must be placed oo the y-sxis. Then Dijkstra's algorithm may be used to solve
the constraint system, giving asymptotic performance on s graph G = (V,E) of am et
O(|E| + |V|log |V]) [3]. as opposed to O(|V||E|) for the general Beliman-Fard al- | .
gorithm. See [13] for a discussion of this ides.
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thase burdles that cross p(e)g(c) in S(¢). (A hurdle ¥3 transforms to r{c)s(c)
in S(c), just kike any other cut.) The hurdle sequence should, of course,
be sorted by y-coordinate, and all crossings must be from bottom to top.
Presorting all the hurdles by y-coordinate eliminates the need to sort each
individual hurdle sequence.

o In line 7, Dijkstra’s algorithm should be used once again, this time
computing longest paths in / from module 1, which is the left edge of the
bounding box of the sketch. If desired, the designer or design system may
add other simple linear inequalities to 7, provided that they are all satisfied
by the initial layout S(0).

o The configuration ¢ found in line 7 specifies the optimal compacted
sketch, but that sketch must still be constructed at line 8. For the purpose
of applying Algorithm R, the single-layer wire-router of [6], it is not necessary
to construct a complete sketch S(c), but only to produce something called
the rubber-band eguivalent (R.B.E.) of S(c). The features of the R.B.E. are
the same as those of S(c), and can be located easily. The wires of the R.B.E.
can be found as follows. The set of points not lying on features or hurdles of
S(c) is a simply connected region, and its boundary is polygonal (if we allow
vertices at infinity). Hence it can be triangulated quickly, and the resulting
set of triangles forms a tree under the obvious adjacency relation. We can
therefore find for each wire w in §(e) the shortest sequence of triangles that

(""‘ a routing of w could pass through, and apply Algorithm W from [6] to find

the wire in the R.B.E. corresponding to w. RN
4.6. Complezity onalysis E'\‘-E
We evaluate the time performance of Algorithm C in three parts. The R
notation | D} is used to mean the size of the data structure D. In the worst ‘-".::',
case, the most time-consuming portions of the algorithm are the O(|F|*) calls E
to Dijkstra’s algorithm in line 4. Each call takes time O(|E| +|V}log|V}) o e
a graph (V, E) [3]. Since |E| is O&ll |), and |V| is n, the sumber of modules, e
this leads to an estimate of O(|F|"(|/| + nlogn)) time. Another contributar :‘ “_':.-'
to the running time is the call to Algorithm F in line 5. If Algorithm F is :."
implemented as suggested in the following section, then each of its O(|F|*) in- A
vocations requires O(|F|log |F|log |G|) tisne, where G is the adjacency graph L
of the sketch. So this portion of the algorithm takes O(|F|’ log |F|log |G|) e
time. Finally, careful analysis shows that the construction and routing of S
the output sketch requires only O(|F||G|log |G|) time [6]. Otber operations, R
including preprocessing the aketch, require considerably Jess time under the \
reasonable assumption that [W|, the number of wire segments in the input, B
s O(IFI"). b
Which of the three major parts of Algarithm C will dominate in prac- ;—3\5__?

tice is not clear. In the worst case, |G| can be as high as (}(|F||W|), if each of e
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276 Compection with Automatic Jog introduction

0}(]W|) wire segments intersects a large fraction of the burdles, and the cross-
ings are not redundant. In most situations, however, |G| should be closer to
|F|. Making reasonable estimates about the average run time of Algorithm F
and the density of the constraint graph I, one can predict that actual per-
formance for the entire operation will probably approach (|F|***) for some
small value of c.

Space usage is easier to evaluate: the main contributors are the graphs
G and ], along with Algorithm R, which may use O(|F||G|) space in the
worst case. Thus the worst case bound is O(|F|*|W|), but none of the data
structures of Algorithm C or Algorithm R is likely to approach its maximum
sise. The actual figure will depend on the number of crossings between wires
and certain cuts in the sketch (¢.g., burdles), and will probably be O(|F|'*®)
for some constant a € (0,1).

:
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8. Improvements and optimisations

The compaction algorithm has been stated in its simplest form, and there
is considerable room to improve the performance of many of its steps. This

section collects several suggestions for speeding up the algorithm. The most ',:'.-:-:::
important of these ideas is to add a preprocessing phase to Algorithm C that DAY
allows fiows across cuts to be computed quickly. ] Y
s
5.1. Faster computation of flows U t__‘;
Recall that the compaction algorithm computes flows using Algorithm F e
from Section 3. The most time-consuming steps of that algorithm involve “;\
searching through a subgraph G’ of the adjacency graph of the input sketch. LR
Algorithm F can be implemented efficiently by taking advantage of the fact S
that the graph G’ is a tree. The first task is to preprocess G’ so that one u
can quickly determine the distance between any pair of its nodes, and hence S
speed up lines 7 and 9 in Algarithm F. The second task is to preprocess G’ N
so that one can compute efficiently the closest node in a connected subset OAN
of G' to a given node. This ability is sufficient to implement lines 6 and 8 -:‘.'_-::'_3
of Algorithm F, because the set of nodes bordering a hurdle or feature from e
below is connected in G'. We wish to minimise the amount of space used L_"
by our data structures; in particular, we cannot store explicitly the distance o
between every pair of nodes. T
The solution is to decompose recursively the graph G', and store with a AN
node only the distance to each of its ancestors in the decompasition. Figure 6 NN
shows the construction. Let n be the number of nodes in the graph G'. The SN
separator theorem far trees [12] implies that G' contains a vertex r whose L
removal disconnects G’ into subtrees containing at most §n nodes each. o
Moreover, the vertex r can be found in linear time uaing deptb-first seazch ":'_':-j',;
- K<




Pigure 6. A tree, drawn with solid Lines, and its decomposition tree.

to compute the sizes of subtrees. If we store with every node its distance
from r, then the distance between two nodes in different subtrees of v can
be computed by sunming their distances from r. Now we decompose the
subtrees of r recursively, forming a decomposition tree D on the nodes of G'.
At each stage of the decomposition, the sizses of subtrees are reduced by a
constant factar, 50 D has logarithmic height. To find the distance between
two vertices in G, one first finds their Jowest common ancestor (LCA) in D,
and then sums their distances from that ancestor. This procedure cleazly
takes at most O(log |G]) time.

Some extra preprocessing is needed before we can compute closest
members of connected sets of G. Let D be the same decomposition tree as
above. The LCA in D of a connected set C C G’ is a member of C, and we
can compute in advance the LCA’s of the connected sets that we care about.
We also store, for each node y and for each of its ancestors z, the highest
vertex in D that is interior to the to the path between s and y in G'. In
case z and y are adjacent in G', we store nil instead.

1 now describe how to compute the closest vertex in a connected set
C C G' %o a node u. X v lies in C, then the answer is u. Otherwise, set
v to be the LCA of C. If v is not an ancestor of v, then replace u by the
LCA of u and v. Now pexform a *binary search” on the path between v and
v as follows. Let s be the highest vertex in D between w and v. If 5 is nil
then the answer is v; otherwise set v « 2 or ¥ «— 3 according to whether s
does or does pot lie in C, and repeat the process. After at most O(log |G))
iterations, the search will terminate, and each iteration can be made to run
in O(log |C|) time.

5.2. Compreaning the adjecency graph
Both the time and space performance of Algarithm C can be improved
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by reducing the sise of the adjacency graph. The trick is to choose hurdles
in such a way as to minimise the number of crossings betwesn wires and
burdies. Although we defined hurdles so that every cbstacle has caly one
burdle incident on its left, this property is unimportant. The burdies can be
chosen to be any st of horisontal cuts such that the set of points inside the
bounding bax, but not lying cn & hurdle or & feature, is simply connected.
Equivalently, if cbstacles and hurdles are considered as the nodes and edges,
respectively, of a graph, then this graph must be & tree.

We can use & minimum-cost spanning tree algorithm to find a st of
burdles that cross as few wires as possible. Every horisontal cut betwesn
different obatacles is & potential hurdle, but we may restrict our atteation
to horisontal cuts that are incident on feature endpoints. There are at most
O(|F|) such cuts, and they can be thought of as the edges of a graph H over
the obstacles. The cost of an edge will be the sumber of crossings of the
cut by wires in the original sketch; costs can be computed eficiently wing
a scanning algorithm as in [6). The hurdles are chosen to be the edges in &
minimum-cost spanning tree of the graph H.

5.3. Ignoring unimportant potential cuts

A few simple checks will probably speed up Algorithm C by a factor
of 4 or more. First of all, a corollary of the correctness proof is that a po-
tential cut ¢,, whose capacity is minimal in the initial configuration cannot
groerate a coustraint. Therefore, the algorithm need only check potential
cuts ¢,y for which |z, ~ 25| > lys — ypl. Second, the lower endpaint of &
feature need not be considered in conjunction with feature endpoints above
it, and symmetrically for the upper endpoint. Similarly, a potential cut
which in the initial configuration travels rightward from the left endpoint
of a horizsontal feature nced not be considered, and symmetrically for right
endpoints. Finally, a potential cut ¢,, with £, > £, need not be checked if
in all configurations d such that A,y(d) > 0, the line segment ¢,q(d) is not
a cut. This is known to be true, for example, if every rightward cut from p
crosses & feature in the same module as p.

6. Highlights of the correctness prool

The correctness proof of Algerithm C cannot be included here due to space
restrictions, for it is highly involved. It does, howevez, lead to an under-
standing of the assumptions that underlie the compaction algorithm. In this
section | state a set of conditions under which one can coanstruct & com-
paction algorithm that performs automatic jog introduction in the manner
of Algerithm C. Knowing these conditions, one can determine whether Al
gorithm C will continue to work if the definition of a legal aketch is modified.
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We require & more tochnical definition of poteatial cut. Let P and o

Q be features in the original aketch §, and let ¥ be a continuous function S

that defines, for each configuration d, a line segment between the features ‘_“%

P(d) sad Q(d) in the sketch S(d). The function ¢ is & potential cut if the i

position of y(d) relative to P(d) and Q(d) depends only on the displacement CrA

between P(d) and Q(d), samely Apg(d) = d,(q) — d,(r) (stretching the \

potation slightly). In other words, ¢ must satisfy the following condition. B

K d and d’ are any two configurations such that Apg(d) = ._-{

Arg(d'), then $(d) is equal 1o ¥(d) shifted to the right by g

d,p) = du(r) waits.

Algorithm C compacts a sketch S by computing a sequence &#(S) =

(¥1,-..,¥m) of potential cuts of S, and using their routability conditions to g

constrain the positions of modules in §. The proof that this technique gen- Sl

erates a sufficient and optimal constraint system depends on several facts. BN

One such fact is Lemma 1, which ensures that an unsafe cut makes a sketch e

unroutable. Another important fact is that the potential cuts $(S) deter- £

mine the routability of the modified sketches S(d). Specifically, they have e

N the following property: :.:2:.
3 Routebility property. If S(0) is routable, and for all A € [0,1] the o
:’. configuration Ad protects every ¥ € #(S), then 5(d) is routable. ;:.:’__
' E The capacities of the potential cuts also have a special property:
Bitonic property. For each ¢ € #(S5), and each line L in con- N

figuration space, there is & point ¢ of L at which the capacity :

cep(¥(c)) is minimal, and cop(¥(d)) is nondecreasing as d moves «.;;, ?

away from ¢ along L. 3;4

In principle, our compaction method depends oo only one farther fact.

Ordering property. Suppose that the following statements hold. -

(1) The configuration d protects ¥; for all i < &. DA

(2) The configuration d lies an the boundary of the set {¢c € AR

R™ : y(c) is a cut). ]
(3) The cut s is properly contained in the line segment ¥, (d). -

Then s is safe in the sketch S(d). et

Algorithm C satisSies this requirement by sorting its potential cuts according v

. to beight. P
= The conditions lsted above allow us to determine when Algorithm C RO
« can be extended to more general kinds of Jayouts. Suppose that under new = "51
- definitions of “sketch” and “legal,” Lemma 1 continues to hold, and that L—
. given & legal sketch S, one can compute in polynomial time a sequence AN
- #(S) of potential cuts with the routability, bitonic, and ordering properties. ::.f::f]
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Suppose also that one bas a single-layer router that can fill in the wires of §
after compaction. Then the technique of Algorithm C gives a polynomial
time algorithm to compact the aketch §.
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7. Extensions and discussion

This section suggests several ways in which the compaction algorithm can
be extended, and concludes with an overview of the main results.

1.1. Generalizations of Algorithm C

-, 7.1.1. Multiple layers. We bave assumed that the layout to be compacted
" comprises only cne layer. To remove this restriction, Algorithm C need
e only generate constraints for each layer of the design independently, as in
lines 1-6. Since most modules have components on more than one layer, the
resulting constraint systems must be merged, by choosing the most restric-
tive constraint between every pair of modules. The merged system is then
solved normally.

7.1.2. Wire widths. None of my results depend on the assumption that
all wires have the same width. If they do not, one need only replace the
counting of wires by the summation of their widths, in the definition of flow,
in Lemma 3, and in Algorithm F. With suitable modifications, features can
have differing thicknesses as well. More details are included in [14].

7.1.3. Multiterminal nets. One major deficiency of the sketch as a layout -
model its limitation on the number of terminals that may contact a wire. The 63
model can be generalised, however, and the compaction algorithm remains

essentially unchanged. (One difference is that Algorithm R, the single-layer

router, can no longer minimise the wire lengths in the output sketch.) See (6]

for a discussion of how to handle multiterminal wires.
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7.2. Summary and conclusion
The main theoretical contribution of this paper is a polynomial-time e
algorithm that compacts IC (or PCB) layouts while introducing jogs into }",-'.",',
wires in an optimal fashion. The power of Algorithm C comes from the
elimination of wires as hard objects in the layout, and their replacement
by constraints between modules. The use of routability conditions to solve
placement problems is not new (7,15,16), but until now, only chaanel routing
problems had been considered. The reason is that the routability of general
planar layouts was not adequately understood until very recently [1,6]. To
characterize planar routability requires a robust model of a circuit layer,
such as the aketch, and a fair amount of theory. In addition, some care is
needed to apply routability conditions to the compaction of general sketches;
proving the correctness of Algorithm C is nontrivial.
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the channel back to the proper sise.

One important question left open by my research is whether the com-
paction method embodied in Algorithm C is more efficient in practice than
the straightforward algorithm, namely, inserting jog points into each wire
where it crosses each horisontal gridline, and solving the resulting constraint
system normally. This technique is evidently simpler than that of Algo-
rithm C, and may be mare efficient in practice. On the other hand, it may
be possible to extend Algorithm C to situations where wires and modules
may contain diagonal segments, and grid-based algorithms break down.

Acknowledgements

I would like to thank my advisor Charles Leiserson for many helpful discus-
sions, and for corrections and comments on this paper. The starting point of
this research was provided by Prol. Leiserson who, along with his former stu-
dent Ron Pinter, discovered the connection between routability conditions
and compaction with automatic jog introduction. Some special case algo-
rithms they developed were implemented by Andrew Hume at AT&T Bell
Laboratories, and used for channel routing. Thanks also to Ron Greenberg
for comments on a draft of this paper.

References

[1) R. Cole and A. Siegel, “River routing every which way, but locse,”
Proceedings of the £5th Annual Symposium on Foundations of Computer
Science (October 1984), pp. 65-73.

[2) A. E. Dunlop, “SLIP: symbolic layout of integrated circuits with com-
paction,” Computer Aided Design, Vol. 10, No. 6 (November 1978), py..

387-391.

F.M.Maley 201

On the practical side, my compaction method can be expected to pro-
duce high-quality layouts with kittle designer intervention, saving both in
chip area and design time. Its primary drawback lies in its use of com-
putational resources. Although there are good reasons to believe that its
worst-case performance bounds will not be approached in practice, resource
Emitations may prevent it from being used to compact large layouts all at
occe. Algorithm C is amenable to use at all levels of the design, however, so
that hierarchical compaction can alleviate much of the resource problem. It
also may be suited to use in channel routing, where the number of compo-
nents is not too great. The idca, which was implemented at Bell Labs (see
Acknowledgements) is as follows: the channel is artificially inflated, so that
an an ordinary channel routing algorithm, which may have difficulty with
crowded channels, may succeed; then a compactor like Algorithm C, with
the ability to insert arbitrarily complex jogs, is applied in order to compact




u_n,vu'.-_x'-.\h-r.‘l N A N M AV T L e T A e R e

J.i

-~
»

o)

R

PRy

L TR TTRTY

Nl [ E Y Y W W AR A A 4
'm Lt " LR .
[ K

v,, TRTY Y w v
S IR
P LI PR

LA

:j: [12] R.J. Lipton and R. E. Tarjan, “A separator theorem for planar graphs,”
SIAM Journal on Applied Mathematics, Vol. 36, No. 2 (April 1979), pp.
\.; 171-189-

'I' (13] F. M. Maley, “An observation concerning constraint-based compaction,”
~ in preparation.

. (14] F. M. Maley, Compaction and Single-Layer Routing, M.S. Thesis, MIT
. Department of Electrical Engineering and Computer Scieace (to be sub-
2 mitted May 1985).

y [15] R. Y. Pinter, The Impact of Layer Assignment Methods on Layout Algo-
} rithms for Integrated Cireuits, Ph.D. Thesis, MIT Department of Elec-
- trical Engineering and Computer Science (August 1982).

¢

.b .

’I

¢

.J

R Ty L e T S T e e e

282 Compaction with Automatic Jog introduction

(3] M. L. Fredman and R. E. Tarjan, “Fibonacci heaps and their uses in
improved network optimization algorithms,” Proceedings of the £5th An-
nual Symposium on Foundations of Computer Science (October 1984),
pp. 338-346.

[4) M. Y. Hsueh, Symbolic Layout and Compaction of Integrated Circuits,
Ph.D. thesis, EECS Division, University of California, Berkeley, CA
(1979).

[5] G. Kedem and H. Watanabe, “Optimisation techniques for IC layout
and compaction,” Technical Report 117, Computer Science Depart-
ment, University of Rochester (September 1982).

[6] C. E. Leiserson and F. M. Maley, “Algorithms for routing and testing
routability of planar VLSI layouts,” to appear in 17th Annual ACM
Symposium on Theory of Computing (May 1985).

[7] C.E.Leiserson and R. Y. Pinter, “Optimal placement for river routing,”
SIAM Journal on Computing, Vol. 12, No. 3 (August 1983), pp. 447-
462.

[8] C. E. Leiserson and J. B. Saxe, “A mixed-integer linear programming
problem which is efficiently solvable,” Proceedings of the £1st Annual
Allerton Conference on Communication, Control, and Computing (Oc-
tober 1983), pp. 204-213.

[9] T. Lengauer, “Efficient algorithms for the constraint generation for in-
tegrated circuit layout compaction,”  Proceedings of the 9th Workshop
on Graphtheoretic Concepts in Computer Science (June 1983).

[10] T. Lengauer and K. Melhorn, “The HILL system: a design environ-
ment for the hierarchical specification, compaction, and simulation of
integrated circuit layouts,” Proceedings, Conference on Advanced Re-
search sn VLS/ (Jaouary 1984).

(11] T. Lengauer, “On the solution of inequality systems relevant to IC lay-
out,” Proceedings of the 8th Workshop on Graphtheoretic Methods in

Computer Science, Hanser Verlag, Miinchen (1982).




o

F.M. Maley 263

[16] A. Siegel and D. Dolev, “The separation for general single-layer wiring
barriers,” Proceedings of the Carnegie-Mellon Conference on VLSI Sys-
tems and Computations (October 1981), pp. 143-152.

[17] J. D. Williams, “STICKS - a graphical compiler for high level LSI
design,” National Computer Conference (1978), pp. 289-295.

o)
=g
ES v

'F }.’
L
P
Ly

-
.

v T,

v
P

."'t‘.
XXX

r
r e W
‘l

1}

o
LAk

S DA
< e S
A v

oy x e

)
4
PPN

B
ey

Q
ale

SR LA AT R R IR
'.'. ety Lt 1, '.'.. LA
ot . . .
LA L " e LI
et . AR AN A
LI 5 2 2 M LI IR

. ’f" '1.. ,
() '
4 ey

td

70
(7

o
RRNE
AR

" _
R
. .
R
0
o0,
A 4




PR w4 g et b e Bor v e s S Y e et i .

e i

R, T aTaT A -
”
.
o
‘ I . l
Z

PRI

g SRS

P
PRIPREPONPIE I

ILMED

-

e

‘

< -.- - I—'
I RO e

I e ETS N Rl R ‘.‘\.
) \ N

e .
NSNS L RN VA, ) RIS L. SR &

- g — -
iy LRt e LA sy




